
Guff’s Character Animation System for 3D Games and Applications

Márcio S. Camilo, Aura Conci

Universidade Federal Fluminense, Instituto de Computação, Brasil

Abstract

3D Games frameworks usually have some type of
Character Animation System based on a low level
layer for animations and a high level layer related with
the behavior and intelligence of characters. The low
level is responsible for providing a way of obtaining
animations and to play them correctly and suitable
according to the needs of the high level. This paper
presents the implementation of the low level layer of
the Guff Framework. This system provides
functionalities for obtaining animations based on the
Doom3’s MD5 models and the possibility of a fine
tune post-design configuration stage, which allows
game designers to set groups of animations for
supplying the high level animation system, animation-
to-animation transitions and animations properties such
as uniformity, evolution, and timing. Finally, a first
approach to a high level animation system, based in a
very simple finite state machine, is developed to show
how the low level animation system can support the
high level animation system.

KeyWords: - Computer Graphics, Computer
Animation, Character Animation, Games Animation
System, Keyframing

Authors’ contact:

{mcamilo, aconci}@.ic.uff.br
www.ic.uff.br/~{mcamilo, aconci}

1. Introduction

Frameworks for 3D Games generally have Character
Animation System modules that deal with the
modeling, representation and behavior of the
characters. Character Animation Systems can be seen
in a two layers view. At the high level animation
system is where the behavior and intelligence of a
character takes place. Meanwhile, the low level
animation system treats to obtain and show the
animation sequences.

High Level animation system can use an AI based
technology to accomplish the intent of giving a “soul”
to a game’s character. Usually it answers to events
happening in the environment that can affect the
character [Watt and Policarpo 2001a; Dybsand 2003].
Moreover, it can give a “personality” to the character
expanding its “feeling” characteristics in one or more
dimensions [Watt and Policarpo 2001a], like good or

bad, honest or dishonest and so on. Most of the time
the “personality” of a character is described with some
type of script [Watt and Policarpo 2001a; Dybsand
2003].

The low level animation system responds to the
high level by obtaining the animation sequences and
playing them in the correct way[Watt and Policarpo
2001b; Azevedo and Conci 2003; Thalmann and
Thalmann 1998]. Low level can be based on three
main types of animations: procedural methods, motion
capture and keyframing [Thalmann and Thalmann
1998; Hodgins at al. 1999].

Generally, the character animations are
accomplished by motion capture and keyframing while
procedural methods are often used for objects in
particle systems or bands of little animals like flocking
birds and swimming fishes [Watt and Policarpo 2001a;
Watt and Policarpo 2001b].

Keyframing is a technique usually performed in
two stages: design and processing. At the design stage
models and animation sequences are created. The
animation sequences can be or cannot be strictly based
on the way the character behaves during the game.
Animation sequences are sets of keyframes that shows
how the model performs a movement time to time
having the initial frame (called baseframe [Making
Doom3 Mods 2004]) as a reference.

During the game run-time the processing stage
takes place by answering the needs of the high level
animation system choosing and playing the animation
sequences in a coherent and suitable way. Generally,
this stage is also responsible for generating in-between
interpolated frames from pairs of keyframes. Figure 1
shows the two stages keyframing approach.

Because of the few complexity and inexpensive
costs demanded of the design and processing stage,
keyframing is still the most popular way of providing
the low level of animations for characters in 3D
Games.

Figure 1: Two stages keyframing approach

1.1 Guff Frameworks System

Guff Framework is a framework for games creation
developed in the Universidade Federal Fluminense.
Guff Framework is formed by an application layer and
a toolkit[Valente 2005].

The application layer determines the architecture
of the applications based on the framework. The toolkit
gives a set of facilities which make possible games
creation. The character animation system is
implemented like a character’s set of classes, taking
part of the Guff Framework’s toolkit, hanging low
level animation system and high level animation
system of the character animation as two layers.

Guff Game Framework’s low level animation
system uses the keyframing approach to deal with
models and animations. The models and animations are
based on Doom3’s MD5 formats. Besides the two
stages keyframing usually contains, Guff Framework
uses a third stage called intermediate configuration
stage that is responsible for allowing a game designer
to do settings that will help to provide the processing
stage with the necessary information to do a better
work playing the animation sequences of the character.

The high level of the Guff Framework’s character
animation system was implemented as a simple finite
state machine which, in addition, is used to test the low
level animation system functionalities.

The remaining of this paper is organized as
follows: section 2 presents a background on the
keyframing subject. Section 3 explains how a game
designer can control the animation sequence based on
the number of intermediate frames. Section 4 shows
how blending transitions between different animation
sequences are accomplished. Section 5 shows the
Guff´s high level animation system. Section 6 shows
some results accomplished. Section 7 deals with the
conclusions and final considerations.

2. Related Work

Early 3D games keyframing techniques were based on
the Vertex Animation concept, sometimes called
Tweening [Watt and Policarpo 2001b; Anderson
2001]. Lately, 3D games have adopted a more efficient

way of representing models known as hierarchical
models. Each node of the hierarchical structure is
called “joint” and the hierarchical structure itself is
mostly called “skeleton” [Watt and Policarpo 2001b;
Anderson 2001; Camilo at al. 2003].

These types of animation sequences can hold just
the necessary data (as rotations, translations and
scales), to indicate how each keyframe is taken from
the baseframe. The flexibility of a hierarchical
structure allows the processing stage to animate the
character by using kinematics (forward kinematics or
inverse kinematics).

Doom3’s MD5 formats for model [Making
Doom3 Mods 2004] and animations are completely up
to date using skeleton structure, quaternions for
defining the rotations and skinning.
Quaternions[Batiste 2003] are a more suitable way of
representing the rotations compared with Euler angles
and matrices, because they do not fall in gimbal lock
problem and permit the use of Slerp (Spherical Linear
Interpolation)[Blow 2004] avoiding distortions that
result from linear interpolation methods for rotations.
Skinning [Lander 1997], that is a specific case of the
FDD[Watt and Policarpo 2001b] technique for
morphing, it allows vertexes to be associated with
more than one joint, solving the common undesirable
visual effects caused by the cracking or
interpenetration of the rigid parts of the meshes, for
instance the upper arm and low arm of a character.

In MD5 model format the skeleton is set in a
referential pose called baseframe. In each MD5
animation format there is list of keyframe packages
containing the rotations and translations for each joint.
Each character may have a set of animation sequences
that is associated with the high level animation system
of the game through scripts describing the character’s
behavior [Making Doom3 Mods 2004].

Guff Framework’s low level uses the MD5 model
and MD5 animation formats to obtain the model and
animations of a character. After the model and
animations have been created in a 3D modeling tool, it
can be converted to the MD5 formats.

Guff Framework’s uses an intermediate
configuration stage between the design and processing
stage to allow game designers easily configure the
animation sequences that will represent the behavior of
a character. For a preliminary implementation each
character has being modeled with a high level
animation system based on a simplified finite state
machine that can give them rudimentary intelligence.

Some approaches were proposed to help model
designers create keyframing sequences. At [Igarashi at
al. 2005] they presented a performance-driven
approach, proposing a spatial, instead of temporal,
interface for creating the animations. In [Terra and
Metoyer 2004] is presented a post-creating stage that

allows model designers to set timing of the animations
in a simpler way than allowed for general 3D modeling
tools, using a 2D interface to describe timing by
gesture. With Guff Framework’s intermediate
configuration stage a game designer can set controls of
uniformity, evolution (the slow in and slow out effect)
and timing which can be dynamically controlled by the
processing stage during the game playing. These
controls can be accomplished by a varying number of
intermediate frames between each keyframe pair
(segment) of an animation sequence. These values of
intermediate frames will be used as the amount of
frames to be interpolated at the processing stage.

Since model designers could feel not comfortable
creating blending sequences of animation to each
possible pairs of animation sequences that can be
played sequentially, it is interesting to have a way of
creating suitable blending effects at run-time. In [Watt
and Policarpo 2001b] is presented a simple way it can
be undertaken by easily interpolating linearly the two
animations based on time. Guff Framework’s low level
animation system uses this approach because it has a
low processing cost, and the results are good
considering a 3D game demands. However, this
method has some drawbacks that have to be carefully
taken into account (these drawbacks and the way they
can be avoided will be shown later on this work). Guff
Framework’s intermediate configuration stage has
controls that help game designers to avoid the
drawbacks when blending between animations.

Figure 2 shows in more details which are the
configuration tasks the intermediate configuration
stage is responsible for.

Figure 2: Intermediate Configuration Stage in details

3. Intermediate frames configuration
module

The first motive for adopting an intermediate
configuration stage between the design stage and the
processing stage, is the number of intermediate frames
configuration.

Generally, when a model designer create an
animation sequence in a 3D modeling tool, at the
design stage, all the frames (keyframes or intermediate
frames) are converted to key frames when the
animation is saved to the MD5 animation format.
However there is a problem when using this approach:

intermediate frames represented as keyframes demand
too much amount of memory because they hang all the
information for rotation and translations of each joint,
as the real keyframes does. Later, a unique number of
intermediate frames are set globally for each pair of
keyframes that is used at the processing stage for
interpolation of frames. Doom3’s low level is based on
this concept [Making Doom3 Mods 2004].

This paper introduces a new approach where just
the keyframes will be saved in the design stage. At the
intermediate configuration stage, a game designer can
set the amount of intermediate frames for each pair of
keyframes. The number of intermediate frames for
each pair of keyframes is saved in a configuration file
as a single integer leaving a larger capacity for
memory. The processing stage is not affected, because
having a varying (or local chosen) number of
intermediate frames between each pair of keyframes
does not make difference in the complexity of the
animation sequences processing.

A tool was developed, by the authors of this paper,
for supporting the intermediate configuration stage,
allowing game designers to perform three types of
aggregated controls: uniformity, evolution based and
timing, over the animation sequences by manipulating
the number of intermediate frames.

3.1 Uniformity control

To non-experienced model designers a major concern
is the undesirable non-uniformities resulted from the
design stage. Uniform control intents to improve the
final result of the animation sequences by putting an
adequate amount of intermediate frames between
keyframes to make an animation sequence more
uniform. Varying number of intermediate frames
between pairs of keyframes can attenuate the rough
effects that a not well balanced animation sequence
may present.

An important point in mind when using this type
of control is to determine how much a keyframe is
“distant” from another. To be more specific what is a
distant measure for keyframes? As part of this project
it was used a measure based on the difference between
two consecutive keyframes. To determine the distance,
it was computed the difference between the positions
taken for each vertex at each keyframe. This yielded
the following result: the bigger the distance between
two key frames the more different they will be. The
distance measure for keyframes needs to obey the four
distance axioms: Positivity, Restrictly Positive,
Simetry and Triangle Inequation [Naylor and Sell
1982]. Distance used here is the Euclidian distance for
each vertex position taken from the two keyframes.
Euclidian distance obeys the four axioms [Naylor and
Sell 1982].

For a keyframe the spatial values of a vertex can
be called (vx1, vy1 , vz1) being related with the canonic

x, y and z axes respectively. For the following
keyframe a similar notation for the same vertex was
used: (vx2, vy2 , vz2) at the same conditions about
canonic axis. Euclidian distance between the vertexes
in each keyframe is:

dv12 = ((vx1 - vx2)2 +
 (vy1 - vy2)2 +
 (vz1 - vz2)2)1/2 (1)

Dv12 is called as the distance between the vertex v
at the keyframe 1 and the same vertex v at the
keyframe 2. Adding the distances of each vertex
yielded the distance between keyframe 1 and keyframe
2. Figure 3 shows the distance between the two
keyframes (1 and 2), the blue dots are the character’s
vertexes.

Figure 3: Keyframes distances

To avoid cases such as: when a few vertexes are
distant, but the key frames themselves are not different
from one another it is best to calculate the sum of all
the vertexes’ distance. As figure 4 shows, one vertex is
not enough to measure the keyframes distance.

Figure 4: All vertexes contribution to distance computation

If the left hand dot is used as reference then
keyframe 2 is the most distant from keyframe 1. But if
the whole set of vertexes is taken into account then
keyframe 2’ becomes the most distant from keyframe
1.

After determining the keyframes distances, they
can be normalized and a relation function can be used
to set a larger number of intermediate keyframes for
greater distances.

3.2 Evolution based control

In this work, evolution is how is called any non-
uniformity effect a model or a game designer would
want to show in an animation sequence. In this case, as
oppose to the last section, the non-uniformity is desired
because it can help to show some interesting physical
effects like weight, inertia or acceleration and some

emotional effect like tired feeling, frightening and run
away, etc. A well known example of evolution used to
show the physical effect of inertia is called slow in and
slow out [Lasseter 1987]. This effect starts as a slow
movement then it gets faster and faster until it reaches
a culminant point and then starts to slow down until it
stops.

Slow in and slow out is shown in the figure 5. The
original animation sequence contains five keyframes.
Then between each pair of keyframes it was inserted a
varying number of frames that makes the animation
sequence works slow at the beginning (because of the
large amount of intermediate frames) then fast in the
middle (few intermediate frames) then slow at end
(again a lot of intermediate frames).

In this example, the keyframes are considered to
be equally distanced from each other. Slow in and slow
out effect can be completely implemented in the
intermediate configuration stage since it depends on
the amount of intermediate frames. This way, the
intermediate configuration stage will work like some
time-editing tools that are part of 3D modeling tools.

It is important to point out that uniformity control
and evolution-based control are not opposite ideas.
They are really complementary to ones another.
Uniformity can be used to fix undesirable non-
uniformities presented by a not well-dealt animation
sequence. The evolution can be used later to print non-
uniformity desirable effects on the sequence animation.

According to [Parent 2001], some types of
interpolation functions can be used to model the slow
in and slow out effect. Some functions used to find the
amount of intermediate frames showing the desirable
effect were: senoidals, parabolics and cubic splines
[Watt and Watt 1992]. The intervals (between pairs of
the two keyframes) were normalized to fit inside the
[0, 1] interval.

3.3 Timing adaptative control

Timing is the velocity and acceleration representation
of a movement in an animation sequence [Lasseter
1987]. Timing can give weight notion of an object,
influence in the perception of the size and scale of
scene objects and characters, and helps to define
emotional state of a character [Lasseter 1987].

Guff Framework’s intermediate configuration
stage allows game designers to set a global factor for
number of intermediate keyframes that works
aggregated with the uniformity and evolution based
controls.

Since game designers may not have a real notion of the
game application’s performance during real-time at the
intermediate configuration stage, this work proposes a
two-hand control that allow the processing stage to
adapt the timing factor according with a

Figure 5: Slow in and Slow out

performance measure. This way, the
computational performance of the game is also taken
into consideration when playing animation sequences.

The frames per second rate is used here as a
measure for the processing stage timing factor
adjustment. When the frame per second rate is too low,
the game’s application just adjusts the timing factor to
a lower value so the animation sequences play faster
(with less intermediate frames). Since the frame rate
comes to the normal rate then the timing factor can be
increased too.

 This way, the playability of the game is
maintained in spite of the timing quality given by a
game designer. It is important to notice that just the
timing factor is adjusted. The uniformity and evolution
factors keep on working without suffering the adjusting
influence, since they are joined just at the moment they
are going to be applied during the animation sequence
processing.

4. Blending Transitions Module

During the lifetime of a character in a game it will
probably have to change its state according with events
that happen at the environment and with its own
intelligence. As changing states means most of the time
changing animation sequences, transitions between
animation sequences are an important question in a
character animation system.

In this work, two types of change of states the
character can present are considered: the deterministic
transitions and the non-deterministic transitions.

Deterministic transitions happen when it is known
exactly at which frame (being a keyframe or an
intermediate frame) the animation sequence will begin
to blend to the following one. With non-determinist
transitions, in the opposite, it cannot be known at
which frame it will begin to blend.

Deterministic transitions occur generally when a
character will change its state without any influence of
the environment. For instance, it is running (the current
animation sequence is running) and slowly stops
blending to an idle position (the following animation
sequence is idle). Non-deterministic transitions occur
when a character suddenly change its state because

something that happened in the environment. For
example, when a character is shot, it leaves its idle
position and begins to run away.

When dealing with animation sequences a system
will face two major problems regarding the transitions
between animation sequences: positioning and
blending. The first problem comes about at the design
stage where a model designer will position the model
at the beginning of the animation sequence in a place
probably completely different from where it should be
when this animation sequence begins to be played at
the processing stage. The coordinates of each vertex of
the model at the first keyframe of the following
animation sequence have to be remapped to the point
where the model is, in the current animation sequence
which is being played.

The blending problem concerns with the
smoothness the current animation sequence should
transition to the following animation sequence. When
nothing is done about blending what is seen is a very
rude transition, if the two animations sequences have
edge keyframes (final keyframe of the current
animation sequence and beginning keyframe of the
following animation sequence) very different.

Leaving all the transitions responsibilities for the
design stage does not seem to be a good solution,
mainly because a model designer could hardly predict
all of the possible transitions between sequence
animations. Even if they could, it would not be enough
to solve the positioning and blending when the
transitions are non-deterministic. At Guff Framework’s
low level animation system the transitions are dealt at
the intermediate configuration stage. As will be shown
later, at this stage a game designer will set the
animation sequences that will be played at each change
of state, and the control settings necessary for the
transition to be suitable. Here, it was chosen to
approach the problems of position and blending in a
simple and effective way, because, this way it could
make the transitions feasible and at the same time do
not overload the processing stage with computations.

The positioning problem is solved with a

remapping of the coordinate system where the origin is
set to be the position of the center of the model at the
current frame of the current animation sequence. This
way, all of the vertexes of the frames (keyframes or

intermediate frames) of the following animation
sequence are changed making the following model’s
position center point the same as the current model’s
position center point. The calculation for a generic
vertex is explained below where vf is the position of
the vertex and vf’, the current model’s center point is
called ca and the following model’s center point is
called cf, is as follows:

vf’ = vf – cf + ca (2)

The blending solution is also very simple and
based on [Watt and Policarpo 2001b]. The key idea is
to interpolate linearly two animations making a fade in
at the current animation sequence as making a fade out
at the following animation sequence.

Calling the current animation sequence as Aa and
the following animation sequence as Af, and the final
result for the time t as A, the calculation result is
showed as follow:

A = (1 - αt). Aa + (αt). Af (3)

It is important to notice that the product t . α varies
from 0 to 1 as time passes, α being an interpolating
factor. Moreover, the current animation sequence and
the following animation sequence are changing too. So
at each instant the frames (keyframe or intermediate
frame) are different both in the current and in the
following animation sequences.

Figure 6 shows the idea of interpolation using
colors to represent the interpolating effect between the
two animation sequences. During the blending process
there is no more difference between keyframes and
intermediate frames. They are all frames of one
animation sequence being interpolated with its aligned
correspondent frame of the other animation sequence.

As stated by [Watt and Policarpo 2001b] this
approach for blending transition between animation
sequences are not granted to work as a real world
transition. However it can give good results since the
animation sequences are aligned and similar. Since
linear interpolation for transition blending has some
drawbacks, these drawbacks are analyzed here and
some techniques to solve them are presented.

Figure 6: Linear interpolation blending transition

Those techniques became settings at the
intermediate configuration stage tool, so a game
designer can deal with them to make suitable blending
transitions.

In the work on which this paper is based on, it was
identified four conditions when the linear interpolation
for blending transitions does not work well. They are
as follow:

“Rubber” effect: The animation during the
transition seems to play by distorting the mesh of the
character giving the impression that the character is
made out of rubber. Intuitively it happens because of
the big difference between the two aligned frames
being interpolated. This effect can be seen at figure 6,
where in the blending phase, the second resulting
frame (yellowish) is not similar to any of the aligned
frames that were blended to generate it.

The proposed solution is to choose animations that
could play together more smoothly. At the intermediate
configuration stage, a game designer is warned
whenever it is chosen two animation sequences that
have frames aligned that differ more than a pre-set
threshold value.

“Goes smoothly then suddenly jump” effect: As
the name implies, it happens when a transition goes
smoothly then suddenly it jumps to a frame without
smoothness. Sometimes it occurs because the current
animation ends before the blending phase ends. It
happens when a game designer set the current
animation not to cycle during the blending phase. For
the remaining of the blending phase the following
animation goes along giving the non-smoothly
impression.

In this case the solution proposed is to choose the
current animation as big as possible. Even doing it, at
the occurrence of a non-deterministic transition, it still
could happen. However, with bigger current animation
sequences, a good reduction of this effect can be
expected. At deterministic transition, this problem is
completely controlled by a game designer at the
intermediate configuration stage as it can chosen at
which frame of the current animation sequence the
blending phase will begin, which in turn will result in
making the phase ends before or at the right frame
where the current animation sequence ends.

“Goes smoothly then displace then come back”
effect: As the name says, this occurs when the
animation transition goes smoothly then suddenly the
model appears in another point of the world and then
come back to the first location. This effect occurs
because of the same reason as “goes smoothly then
jump” effect, but the result is different because in this
case what happen is that a game designer allows the
current animation sequence to cycle. When the current
animation reinitializes, improperly experience the
effect of the wrong positioning calculation; this is why

the model appears in a wrong place and then because
of the remaining of the interpolation it comes back to
the right position in the world.

The idea here is to not allow the current animation
sequence to cycle while the blending phase is taking
place. As a matter of fact, the following animation
sequence can also ends before the blending phase
finishes, so it is also recommended that it should not be
cycled too. Moreover, the following animation
sequence should be chosen so as to never ends before
the blending phase finishes. These settings can all be
done in the intermediate configuration stage.

“Hit and back” effect: Occurs when a hit and

back impression is seen from the animation transition.
To understand why this effect occurs, a deeper view in
the relationship between the changes of states,
animation sequences and animation transitions, has to
be taken.

When a non-deterministic transition happens, the
current animation sequence begins to blend to the
following animation sequence. Since the following
animation sequence represents a not idle state, soon the
character will have a deterministic transition that will
bring him back to the idle state. For example, when a
character is shot it becomes frightened and starts
running and once it feels safe it stops running and
starts patrolling.

For deterministic change of state a game designer
has to choose a frame where it will begin the transition
to an animation sequence that represents an idle state.
If the game designer chooses a frame that is very near
to the beginning of the animation sequence it can occur
that this frame is taking part of a non-deterministic
transition.

Because the blending phase does not allow the
following animation plays like a current animation of
another animation transition, the second transition
cannot be performed. So the former following
animation sequence that now is the current one, have to
cycle once more to initiate the deterministic transition.

That second cycle causes the hit and back effect in the
animation transition.

To avoid this type of effect a game designer has to
set the animation sequences, for deterministic change
of state, big enough to support the transitions where it
is the following animation sequence, a fragment of the
sequence without transition and finally the transition
where it plays the role of the current animation
sequence.

5. High Level Animation System

As a first trying for creating a high level animation
system for the Guff Framework’s character animation
system it was implemented a simple finite state
machine that can make the character interact with the
player and the environment.

This first approach also serves as a test for the low
level animation system as it can ask for animations
previously set, and the low animation level can supply
it with the animations suitably. Figure 7 shows the
finite state machine diagram where the states can be
explained by their own names.

The “Detect Enemy”, “Shot”, and “Death” events
are non-deterministic change of states. The remaining
events are deterministic change of state.

For the “Detect Enemy” event it was used an
oriented bounding box – sphere collision detection
algorithm based on [Möller and Haines 1999]. For the
“Shot” event it was used an oriented bounding box –
ray collision detection algorithm also based on [Möller
and Haines 1999]. For the “Death” event, it is set an
amount of life for the character. Whenever he is shot
its amount of life is decremented. When it comes to
zero the character begins to die.

For all the events a game designer is allowed to set
animations sequences and frames of beginning of
deterministic change of state transition animations at
the intermediate configuration stage.

Figure 7: Finite State Machine of Guff Framework’s high level animation system

6. Results

Some tests were run to verify the Guff Framework’s
character animation system and its facilities [Camilo
and Conci 2006]. Tests were made using real
characters’ animation sequences taken from Doom3. It
was used animations from Archvile, Guardian, and
Cherub characters.

At first it was tested the character animation
system using a simple finite state machine to act as a
high level animation system. It worked as expected
showing that the low level layer does well in supplying
the high level with the animation sequences demanded.
Figure 8 shows the Archvile character defending itself
using the “attack” animation sequence. The lines
around the character are its axis aligned bounding box
represented.

Then some tests over the controls of number of
intermediate keyframes were done. These tests showed
that the three controls work fine in their intents and
that they can work together to make animation
sequences suitable for games. The uniformity control
was applied to an animation already created with non-
uniformity behavior. The control did well in giving
uniformity to animation sequences. Figure 9 shows the
amounts of intermediate frames should be created to

uniformize the animation sequence “attack” of the
character archvile.

For the evolution based control, it was identified
that the best approach for the slow in and slow out
evolution effect was the cubic spline curve. With this
curve the slow in and slow out effect was played well
giving to the animation more smoothness than the
other curves as showed at the figure 10, where the
three types of evolution approaches were applied over
the uniformity control.

The timing control and its behavior during the
execution of the application were also tested. A 60
frames per second rate was set as a threshold for
adjusting timing control. Behind this value the timing
factor was adjusted according with the frame rate
variations, making the animation sequences playing
speed vary coherently with the frame per second rate.
Figures 11 and 12 show the variation of the timing
factor according with the frames per second variation,
for 7 and 10 characters being animated.

The intermediate configuration state for settings of
the blending transitions was also tested. It succeed well
in allowing setting all of animation sequences
transitions of characters avoiding the undesirable
effects for animation transitions cited before.

Figure 8: The “Attack” animation sequence of the Archvile character defending himself

Distâncias Normalizadas

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Keyframes

D
is

tâ
n

ci
as

Figure 9: Segments distant between pairs of near keyframes show how much interpolated frames should be created to uniform the
animation sequence

Uniformização . Evolução . Timing

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Keyframes

N
ú

m
er

o
 d

e
in

te
rm

ed
ia

te
 f

ra
m

es

resultado senoidal

resultado quadratico

resultado cúbico

Figure 10: Uniformity and Evolution combined

Figure 11: Frames per second and timing variation for 7 characters being animated and (b) 10 characters being animated

Figure 12: Frames per second and timing variation for 7 characters being animated and (b) 10 characters being animated

Finally is presented here a comparison between
Guff’s Framework Animation System and others
current well known game engines. Table 1 shows this
comparison.

When it was not possible to infere, based on the
documentation provided by the framework or game
engine distributors, if the characteristic is presented or
not, a interrogation mark is showed.

Framework or game engine Skeletal
animation and
skinning

Intermediate
configuration
stage

Transition control High level
layer

OGRE [Ogre 3D 2006] yes ? yes no
Cal3D [Cal3D 2006] yes no yes no
Doom3 engine [Making
Doom3 Mods 2004]

yes yes ? yes

Guff yes yes yes yes

Table 1: Frameworks and game engines comparison

Timing x F/s

0

10

20

30

40

K e y f r a me s

t iming

f / s

Timing X F/s

0

10

20

30

40

50

60

Ke y f r a me s

t iming

f /s

7. Conclusion

This paper presents the Guff Framework’s character
animation system. This character animation system is
based on two layers: low level animation layer that
deals with the animation sequences, and a high level
animation sequence where the character’s intelligence
takes place.

The low level animation is based in keyframing
techniques. It was presented here an approach of
inserting an intermediate configuration stage between
the design stage and the processing stage of the
keyframing process. The intermediate configuration
stage is also useful for setting the animation sequences
set that will supply the high-level animation system
and the blending transitions between animation
sequences.

Future work development might uncover a better
non-deterministic approach for the high-level
animation system. Also a more effective approach for
evolution control during the intermediate configuration
stage, like parameterized spline curves [Azevedo and
Conci 2003], will be studied to accomplish more
suitable results.

References

Anderson, E. F., 2001. Real-Time Character Animation for
Computer Games. Bournemouth University. Available
from:
http://ncca.bournemouth.ac.uk/newhome/alumni/docs/C
haracterAnimation.pdf [Accessed 02/2006].

Azevedo, E., Conci, A., 2003. Computação Gráfica. Teoria e
Prática. Rio de Janeiro. Editora Campus.

Batiste, S., 2003. Squeezing the Animation. Game
Developer. The H. W. Wilson Company.

Blow, J., 2004. Understanding Slerp, Then Not Using It.
Game Developer. The H. W. Wilson Company.

Camilo, M., Conci, A., 2006. Um Estágio Intermediário
de Configuração de Animações para jogos e aplicações
de simulação 3D. Rio de Janeiro. In SPOLM 2006.

Camilo, M., Martins, R., Hodge, B., Sztajnberg, A., 2003.
Considerações sobre Técnicas para Implementação de
Skeletal Animation em Jogos 3D. Rio de Janeiro.
Cadernos do IME - UERJ. Available from:
http://www.ic.uff.br/~mcamilo/gprogramming/skeletala
nimcarcara.pdf [Accessed 02/2006].

Dybsand, E., 2003. AI Middleware: Getting Into Character.
Game Developer. The H. W. Wilson Company.

Hodgins, J., O’Brien, J. F., Bodenheimer, R. E., 1999.
Computer Animation. Atlanta. Georgia Institute of
Technology.

Igarashi, T., Moscovich, T., Hughes J., 2005. Spatial
Keyframing for Performance-driven Animation.
Eurographics / ACM SIGGRAPH.

Lander, J., 1997. "On Creating Cool Real-Time 3D".
GamaSutra. 1997. Available from
http://www.gamasutra.com [Accessed 07/2005].

Lasseter, J., 1987. Principles of Traditional Animation
Applied to 3D Computer Animation. Pixar. San Rafael,
California. ACM.

Making Doom3 Mods: Introduction, 2004. Available from:
http://www.iddevnet.com/doom3/ [Accessed 01/2006].

Möller, T., Haines, E., 1999. Real Time Rendering.
Massachussets. A. K. Peters.

Naylor, A. W., Sell, G. R., 1982. Linear Operator Theory in
Engineering and Science. Holt, Einenart and Winston.
New York.

Parent, R., 2001. Computer Animation Algorithms and
Techniques. San Francisco. Morgan-Kaufmann.

Thalmann, M. N., Thalmann, D., 1998. Computer Animation
in Future Technologies. Switzerland. Miralab.

Terra, S., Metoyer, R., 2004. Performance Timing for
Keyframe Animation. Eurographics / ACM
SIGGRAPH.

Valente, L., 2005. GUFF: Um framework para
desenvolvimento de jogos. Niterói. UFF. Available
from: http://www.ic.uff.br/~lvalente/en/projects.html
[Accessed 02/2006].

Watt, A., Policarpo, F., 2001. 3D Games: Real-Time
Rendering and Software Technology. Vol.1. New York.
Addison-Wesley.

Watt, A., Policarpo, F., 2001. 3D Games: Real-Time
Rendering and Software Technology. Vol.2. New York.
Addison-Wesley.

Watt, A., Watt M., 1992. Advanced Animation and
Rendering Techniques: Theory and Practice. New York.
Acm Press. Addison Wesley.

Ogre 3D. Available from: http://www.ogre3d.org
[Accessed 02/2006].

Cal3D. Available from:
http://download.gna.org/cal3d/documentation/api/html/i
ndex.html [Accessed 02/2006].

